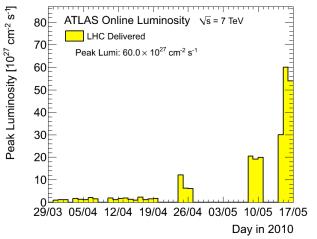
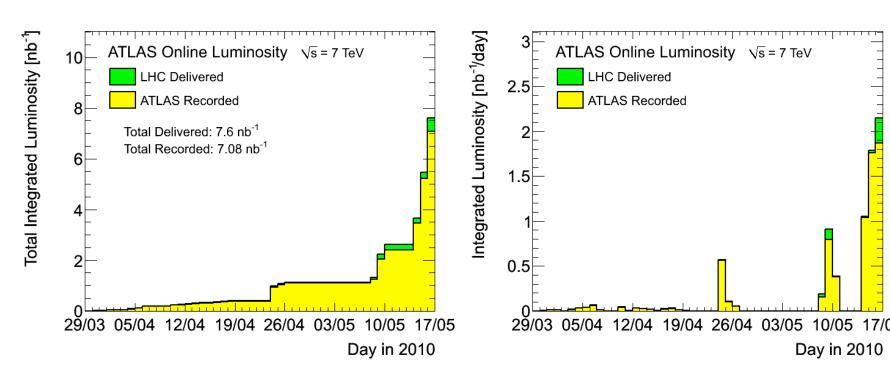
ATLAS: M&O, Commissioning, Performance

BNL DOE REVIEW, MAY 2010

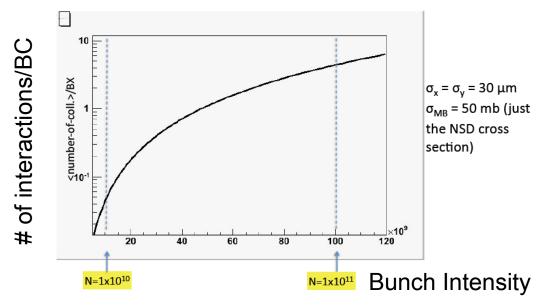

S. RAJAGOPALAN

OUTLINE


- An Executive Summary:
 - Detector, Software & Performance
 - Re-emphasizing the points made at the plenary session.
- Details
 - Liquid Argon (LAr)
 - Cathode Strip Chambers (CSC)
 - Trigger
 - Performance
- Summary
- Highlighting BNL role in each of these activities.

ATLAS: Data Collection

- Collected ~ 8 nb⁻¹ with stable beams
 - with peak luminosities of 6 x 10²⁸ cm⁻² s⁻¹
 - Most of this coming this past weekend: 5/15



- 96.5% of luminosity delivered with stable beams has been recorded.
- Driven primarily by minimum-bias triggers.

LHC plans in the coming months:

- Successfully operating now with 2 x 10¹⁰ protons/bunch.
 - With up to 3 colliding bunches in machine.
- Plans to double the total beam current ~ every two weeks
 - Proposal to increase bunch intensity up to 10¹¹ protons/bunch
 - Gives rise to about 4 to 5 interactions/crossing
 - Or twice the number of bunches with half the protons/bunch
 - More manageable pile-up conditions

LHC plans in the coming months:

• Last Weekend (5/15):

- 3 colliding bunches each with 2 x 10^{10} protons.
- Peak Luminosity at 6 x 10²⁸ cm⁻² s⁻¹.
- Collected > 3 nb⁻¹ over the weekend.

Until end of June:

- Increasing intensity to 10¹¹ protons/bunch
- Increasing to 16 bunches and peak L up to 10³⁰ cm⁻² s⁻¹ (mid-June)
- Expect 1 pb⁻¹ by end of June

Longer time-scale:

- Intermittent running at lower bunch intensity/higher # of bunches possible to have lower pile-up samples available for studies.
- Increasing inst. luminosity to 10³² cm⁻² s⁻¹ by year end.
- 100 pb⁻¹ accumulation by year end
- 1 fb⁻¹ by end of 2011 (before first major shutdown).

DETECTOR

- Detector R&D, construction and operations has been a key strength at BNL for the past several decades.
 - Significant expertise, in collaboration with Instrumentation Division.
- In ATLAS, our contributions include:
 - Liquid Argon Calorimeter
 - Barrel Cryostat, cryogenics
 - Signal Feedthroughs
 - Barrel Cold Electronics
 - Front-end electronics and crates
 - Low Voltage Power Supplies
 - System Tests
 - Cathode Strip Chambers
 - Production of all chambers
 - On-detector electronics

SOFTWARE

- Significant contribution early on in Simulation & Reconstruction software:
 - Coupled to our interests and expertise in detector sub-systems
 - Driven by the need to understand detector performance.
 - Today, we continue to be involved in detector software, but naturally diversified in contributing to related performance studies.
- We continue to contribute to Core Software development including:
 - Core software for offline reconstruction (Athena)
 - Database
 - Distributed Analysis and production software.
 - Driven by our need to adapt and use of the software components remotely. In collaboration with Physics App. Software (PAS) group.
 - Much of this is U.S. ATLAS Operations program funded effort, but with active participation of core-program physicists.

TRIGGER & PERFORMANCE

- Our interests and contribution to performance studies relate directly to our detector interests:
 - electron/photons
 - jets
 - taus
 - muons
- Involved in trigger performance and related software development.
- Experience from D0 has been critical to our successful contributions to ATLAS.
- Close collaboration with several groups, in particular nearby U.S. ATLAS institutes, including Stony Brook.

LEADERSHIP roles in ATLAS and U.S. ATLAS

ATLAS:

- ATLAS Trigger Coordination (Rajagopalan)
 - One of the five principal activity areas in ATLAS
- ATLAS Liquid Argon Software & Data Preparation Coordination (Ma)
- Current ATLAS Physics Group Conveners:
 - SUSY, Higgs, Heavy Ions (Redlinger, Assamagan, Steinberg)
- ATLAS Jet Trigger (Begel)
- ATLAS Distributed Analysis Operations (Klimentov)
- Membership in several ATLAS steering groups.

U.S. ATLAS:

- U.S. ATLAS Computing & Physics Support (Wenaus)
- U.S. ATLAS Deputy Program Manager (Gordon)
- These leadership positions reflect our successful role in ATLAS and our ability to make significant contributions to LHC physics.

Role in U.S. ATLAS

- Our expertise in:
 - Detector sub-systems, Software, Trigger and Performance
- Provides a solid platform that will allow us (BNL) to participate in LHC physics analysis.
- Allows us to play a vital role in assisting U.S. physicists with their analysis program:
 - Several universities do not have the same level of expertise in underlying software and particle identification necessary to participate effectively in a physics analysis.
 - Our responsibility as a U.S. ATLAS Analysis Support center necessitates the need to build an "expertise foundation".
 - Frequent "jamborees", weekly meetings involving several institutes, personal one-to-one interactions and communication via e-mails etc. provide the vehicle for this assistance.

ATLAS LEVEL OF EFFORT (FY10) Core Research Program Physicists Software Staff Post-C

Software		Staff	Post-Doc	Total
	Calo	0.7	0	0.7
	Muon	0.1	0	0.1
	Core	1.3	0	1.3
	Trigger	0.1	0	0.1
	Total	2.2	0	2.2
M&O				
	LAr	0.3	0.95	1.25
	Muon	0.4	0.2	0.6
	TC	0.2	0	0.2
	Total	0.9	1.15	2.05
Performance				
	egamma	0.4	0	0.4
	Jets	0.1	0.25	0.35
	Tau	0.4	0	0.4
	Muon	0	0.2	0.2
	Trigger	1.15	0	1.15
	Total	2.05	0.45	2.5
Physics	Total	3.75	2.2	5.95
R&D	Total	3.4	0.1	3.5
Support	Total	0.8	0	0.8
Effort Total		13.1	3.9	17

Operations Tasks

- There are three classes of operations task:
 - Type 1: ATLAS Control Room Shifts (55 per day)
 - Type 2: all other shifts, on-call, validation, ... 145/day
 - Type 3: Expert operation tasks, ~ 600 FTE.
- Each institution is expected to contribute to each of these categories proportional to the number of authors.
- For 2010, this share is about:
 - − Type 1: ~ 7 shifts per author
 - Requires travel to CERN, putting additional burden on CERN based people
 - Type 2: ~ 19 shifts per author
 - Includes remote data taking shifts
 - − Type 3: ~ 0.25 FTE per author.
 - We have ~4 of 17 FTE devoted to M&O + Software activities
- Expect the right share to balance over ~ 3 year period.
- We are meeting our share of Type 3 tasks, but fall short in Type 1 & Type 2.

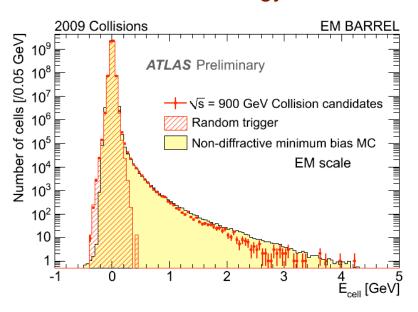
BNL contribution to recent public notes:

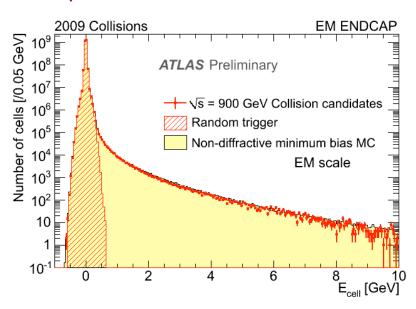
- BNL is contributing to several ongoing performance and physics analysis.
- As an indication of our success, ATLAS produced a "book" on 12/28/2008:

"Expected Performance of the ATLAS Experiment:

Detector, Trigger and Physics"

- Out of 76 sections WE:
 - Contributed to 21 sections
 - Were reviewers of 5 sections
 - Were editors of 6 sections
 - Muon Reconstruction and Identification: (Adams)
 - Calibration and Performance of the EM Calorimeter (Snyder)
 - The ATLAS Trigger for Early Running (Rajagopalan)
 - Data Preparation for the ATLAS HLT Calorimeter Algorithms (Damazio)
 - Diboson Physics Studies (Ma)
 - Prospects for SUSY Discovery Based on Inclusive Searches (Paige)

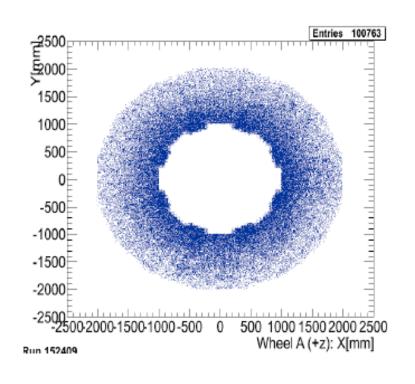

THE DETAILS

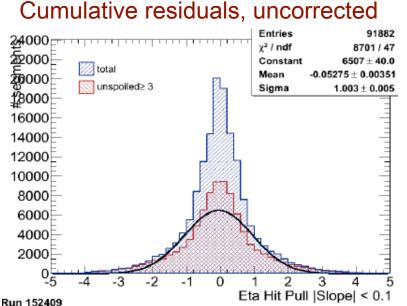

LAr: Software, Maintenance & Operations

- Low Voltage power supply (Chen, Damazio, Lanni)
 - Design, Production backup, Maintenance & Operations
- Software:
 - Electronic Calibration software & processing (Tarrade, Damazio)
 - Conditions database for online software (Majewski)
 - LAr Trigger software development (Damazio)
- LAr data quality/performance:
 - Understanding detector problems (Gadfort)
 - Assessing the performance of EM calorimeter with final state electrons (Tarrade)
- Leadership:
 - LAr Software & DataPreparation Coordinator (Ma)
 - LAr Run coordinator (Majewski)

LAr Detector Performance

Distribution of Cell Energy in EM calorimeter compared to Non-Diffractive MC

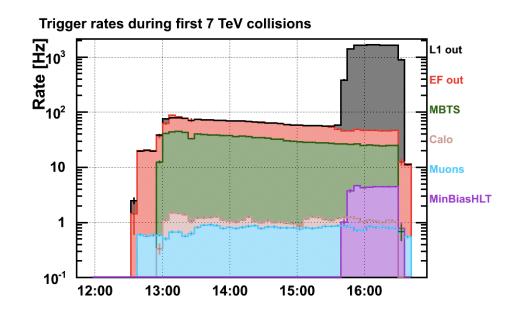


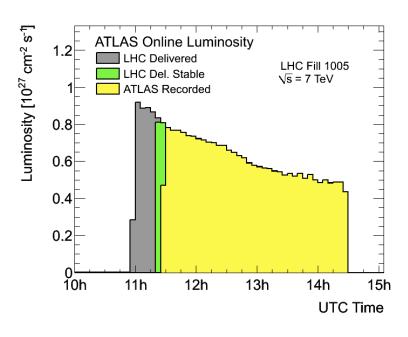

98.5% operational number of channels in LAr EM calorimeter Low Voltage Power Supply:

- All 58 are currently operational (five of them have lost some redundancies)
- Backup LV PS prototypes evaluated, vendor selected for production (PRR)
- Installation during 2012 shutdown.

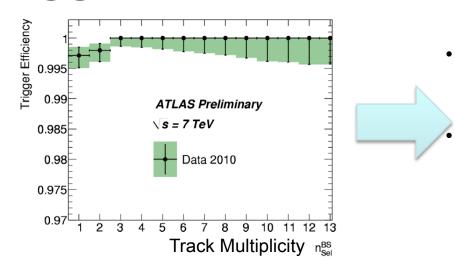
MUONS: CSC

- BNL proposed, designed & built the detectors and on-detector electronics.
- We have full responsibility of the operation and maintenance of detector including services such as low and High voltage, cooling and gas systems.
- 98.5% of the detector fully operational.
- Readout limit extended to 63 kHz, now regularly part of online running.

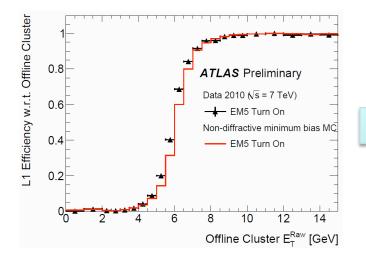



Trigger: Software & Performance

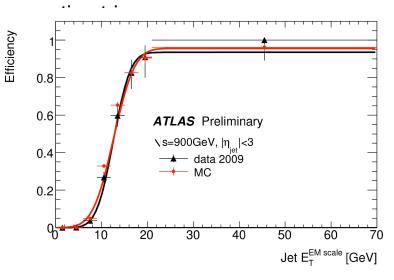
- Overall Trigger coordination (Rajagopalan)
 - One of the five principal activity areas in ATLAS
- Jet Trigger coordination (Begel)
- Calorimeter trigger software (Damazio)
- Software tools to access trigger decisions during analysis (Begel)
- Measurement of trigger efficiencies: muons, jets. (Begel, Redlinger, Mete)


Trigger operational from Day 1

- Peak Luminosity of 10²⁷ cm⁻² s⁻¹.
- Primary trigger relied on MinBias trigger scintillator: MBTS_1 (requiring 1 of 32 scintillators)
- Most of High Level Trigger (HLT) was running in "monitoring" mode.
- Min-Bias HLT was enabled to actively reject during first fill.
- Recorded > 97% of delivered data with stable beams.



Trigger performance studies



Efficiency of L1 Jet cluster trigger J5 (5 GeV) at EM scale determined from min-bias data and compared to non-diffractive simulation

Efficiency of L1 Minimum Bias trigger scintillator (MBTS_1 == requiring 1 of 32 scintillators) at 7 TeV.

Determined using random trigger based on BPTX (beam pick-ups) with HLT space point

Efficiency of L1 Electromagnetic (EM) cluster trigger, EM5 (5 GeV in 0.1 trigger tower).

Determined from min-bias trigger sample requiring offline EM clusters and compared to non-diffractive simulation.

Trigger commissioning and plans

- Rely largely on min-bias triggers with low luminosity
 - Total output rate to disk ~ 200 Hz at 1.6 MB/event.
- Pre-scale min-bias keeping L1 Calo & Muon un-prescaled with increasing luminosity operating HLT in "monitoring" mode.
 - Until rates for L1 Calo + Muon ~ 150 Hz.
- Trigger menus developed to adiabatically transition to higher luminosities.
 - All items controlled with pre-scale sets that can be updated during a run
- Rate estimation with data ongoing, bootstrapping to higher luminosities.
 - Serve as input in developing pre-scale sets for higher luminosities.
- Efforts underway to understand the effects of pile-up on trigger.

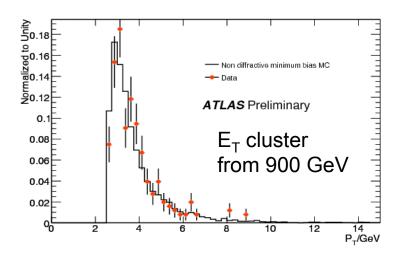
Software

D3PD maker

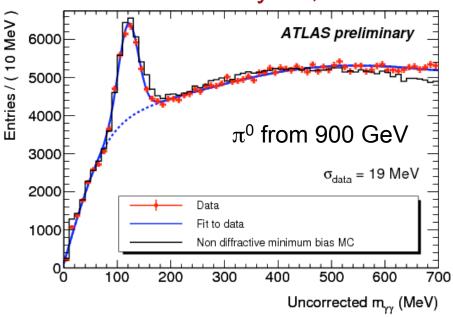
- BNL developed the common framework for ntuple production for performance and physics, allowing physics and performance groups to "plug-in" their tools.
- BNL also developed the software/ntuples for e-gamma studies.

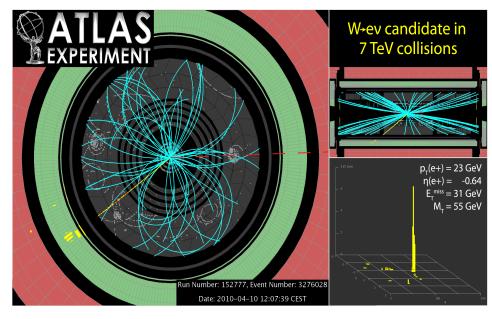
AthenaRootAccess

Allows access to reconstruction output directly from ROOT.

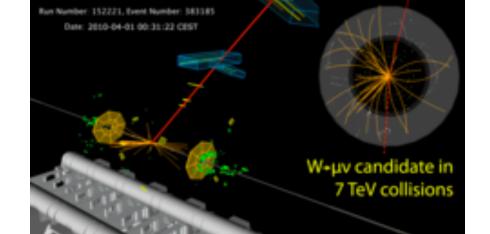

StoreGate

- Transient Data Model Infrastructure with the ATLAS reconstruction framework.
- Production & Distributed Analysis Software.
- Pile-Up and Overlay software.
- Contributions to LAr, Muon & Trigger software applications.


e-gamma performance

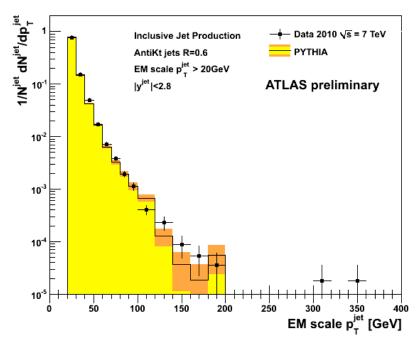

BNL personnel active in analysis of first e/gamma data: data/MC comparisons and pi0 search.

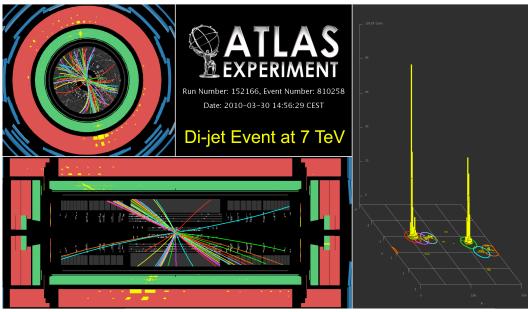
ATLAS analysis of early e/gamma data relies on NTuple code developed at BNL.


Snyder, Tarrade

Muon software & performance

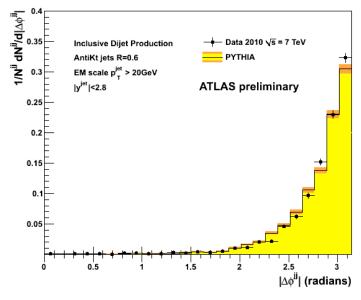
- Lead effort to commission and develop and maintain software for the CSC detector. Run weekly meetings.
- Software development for CSC Simulation & Digitization
- Validate muon performance in releases and report to physics validation
- Carry out studies to evaluate muon performance (efficiency, fakes, isolation, resolution, etc).
- Monitor MC reconstruction jobs
- All these strengthen our ability to contribute to physics with final state muons:
 - Inclusive muon cross section
 - W' to muons



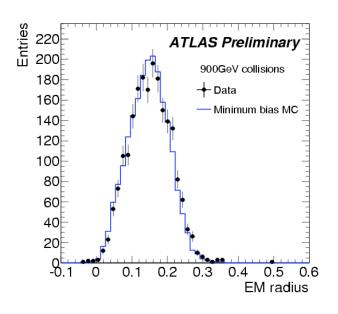

Assamagan, Adams, Nikolopolous

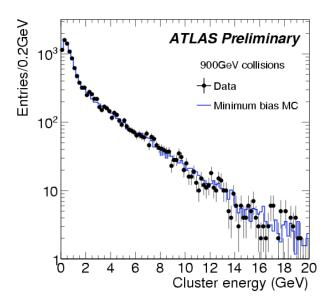
Jets performance

- Principal Contributors: Begel, Ma, Majewski, Paige, Pleier in close collaboration with several other institutions.
- Jet Energy Scale (JES) using Global Calibration Weight scheme
- Determination of JES using tracks in jets; will be used as a cross check on systematic uncertainty for initial JES.
- Determining jet efficiency from data using track jets
- Understanding jet angular resolutions by comparing topoclusters with tracks
- JES corrections for non-isolated jets
- Jet Trigger performance


Jet Performance

Inclusive Jet PT and $\Delta\Phi$ distributions Measured (black dots) at EM scale and Compared to PYTHIA.


Only statistical errors are shown.



Tau performance

Protopopescu, Tarrade, (Patwa)

- Current tau identification based primarily on cut methods.
- Need to explore more sophisticated methods to extract tau candidates, such as boosted decision tree and likelihood methods.
 - Significant experience from D0 on tau identification.
 - Develop, study and implement these methods in ATLAS
 - Leading naturally to involvement in Z $\rightarrow \tau\tau$ and VBF H $\rightarrow \tau\tau$ analysis

Summary

- BNL has a strong expertise in detector R&D.
 - Has made major contributions to ATLAS LAr and CSC detectors
 - And continues to maintain and operate the detectors.
- BNL has made significant contributions to related performance areas:
 - Trigger, egamma, jets, taus and muons.
- BNL has taken leadership roles in many of these activities.
 - With memberships in ATLAS Management and several major coordination bodies.
- BNL plays an essential role in U.S. ATLAS Physics Analysis Support activities.
- And BNL will use this established expertise to make major contributions to ATLAS discovery and precision physics and future upgrades to ATLAS detector.
 - This journey has already begun.